原标题:微软亚洲研究院副院长:哪些因素让AI成功跨界来得更快?
澎湃新闻记者张静
“我们这些做人工智能研究的人,可以在自己的圈子里活得非常开心,每年发表大量论文,互相之间都觉得自己的东西很有用。但是任何一个技术真正产生实际产业价值,一定有很长的路要走。”微软亚洲研究院副院长刘铁岩日前在接受包括澎湃新闻在内的采访时如此表示。
AI不是空中楼阁,它在很多现实领域可以创造价值,而门槛在于跨界共创。就AI研究者而言,人工智能技术要想与其他行业产生良好互动,需要具备两个条件,一是学术研究的本质,二是平台性。
抱着探索目的是智能化转型跨界合作成功的一个基本前提,大平台心态带来公平性、公允性。在跨界中,原创技术和行业知识都重要,从科研角度简单照猫画虎或带来误导。
刘铁岩说,对于作为AI用户的企业、行业而言,也必须认知到人工智能工具不是拿来开箱即用的,而是要结合业务特点做深入的定制化和共创。“如果客户有这个认知和耐心,我相信人工智能落地会比今天好得多。”
至于AI在哪些行业的跨界性更大,刘铁岩表示,技术本身具有跨界性,在其他领域有应用的可能性。“但我们去关心一个技术的跨界,不如去关心一个技术创造过程的跨界。”也许研究者为AI落地医疗与AI落地金融所创造的工具完全不一样,但刘铁岩相信,创造的过程具有很大的借鉴价值。
刘铁岩被国际学术界公认为“排序学习”领域代表人物,他是国际电子电气工程师学会院士(IEEE Fellow),美国计算机学会杰出会员,卡内基梅隆大学兼职教授,诺丁汉大学荣誉教授,清华大学、中国科学技术大学、南开大学兼职教授、博士生导师,在深度学习、增强学习、分布式机器学习等方面发表了百余篇学术论文。
简单使用AI工具并不会轻易创造产业价值,门槛在于跨界
“人工智能为企业带来实实在在价值的例子比比皆是。”
刘铁岩对包括澎湃新闻在内的记者表示,AI不是空中楼阁,它在很多现实领域有价值,并且可以创造价值。但只是简单使用一些AI工具或算法,是不会轻易创造产业价值的,门槛在于跨界共创。
“我们这些做人工智能研究的人,可以在自己的圈子里活得非常开心,每年发表大量论文,互相之间都觉得自己的东西很有用。但是任何一个技术真正产生实际产业价值,一定有很长的路要走。”
这是学界和业界都必须要认知到的事实,人工智能学者要走出去跟企业、跟基础学科的科学界合作。企业、行业也必须认知到人工智能工具不是拿来开箱即用的,而是要结合业务特点做深入的定制化和共创。
“如果客户有这个认知和耐心,我相信人工智能落地会比今天好得多。”之所以如此感慨,是因为“很多客户希望开箱即用”,“当打开箱子发现不那么好用时,就会出现所谓的排斥感、冷淡感,AI历史上的几次寒冬、几次春天都已经重复了多少次。”
刘铁岩说,AI技术一直在强劲增长,“我自己身处于人工智能研究圈里,我能够感受到我们的创新从来没有停止过,而且每一年都会有大量新的研究成果发表,有很多亮眼的工作。”实际上并不是AI技术不行,只是大家的期望值不恰当。没有付出,只是等着收获,这会导致AI落地迟缓。
他曾多次用运动员和裁判员来比喻跨界合作的心态。“企业必须抱着运动员的心态来做事,而不是裁判员的心态。他们必须能够真正下场,知道这是我们共同的比赛,成功需要双方的努力。”
“这个心态太重要了。”刘铁岩说,完全不同的态度导致的跨界结果一定是大相径庭的。
2017年,微软亚洲研究院“创新汇”成立,目标是以微软亚洲研究院的科研智慧和微软的创新技术为基础,与不同行业、不同领域的现实需求接轨。
那时候,“创新汇”就有帮助企业数字化、智能化转型的强烈决心。4年过去,与各行各业的跨界合作让刘铁岩觉得,一个企业是否真的勇敢,愿意开放地拥抱不熟悉的领域也非常重要。“参与‘创新汇’的这些企业都抱着一个很开放的心态,才会跟我们去共创、去跨界。”
他认为,好的智能化转型需要有一群既懂行业又懂AI的人,并且不只是抱着为一家企业或一个业务去获得利益、减少成本这样的小目标,而是对行业产生推动,最终实现数字化转型。“虽然身在企业,但是胸怀行业、胸怀天下,转型过程中这一点非常重要。”
至于哪些行业的跨界性更大,刘铁岩表示,技术本身具有跨界性,在其他领域有应用的可能性。“但我们去关心一个技术的跨界,不如去关心一个技术创造过程的跨界。”也许研究者为AI落地医疗与AI落地金融所创造的工具完全不一样,但刘铁岩相信,创造的过程具有很大的借鉴价值。
原创技术和行业知识都重要,从科研角度简单照猫画虎或带来误导
就AI研究者而言,人工智能技术要想与其他行业产生良好的互动,在刘铁岩看来,需要具备两个条件,一是学术研究的本质,二是平台性。
所谓学术研究的本质,也就是抱着探索的目的,而不是追求利益的目的,这是使得智能化转型跨界合作成功的一个基本前提。
“如果我们是一个商业性的公司,追求的是利益,而不是学术的推进、研究的发展,那么很快就会变成技术外包。我们帮助企业解决了某个问题,创造了一些商业价值,他们也为此付费,大家就Happy Ending,也可能会一拍两散,再找下一个用户。”但要想真正改变一个行业,刘铁岩认为需要有持续的决心,而绝不是做一两个商业案例。
所谓平台性,他认为,只有具备大平台的心态,才能做到赋能其他行业并取得成功。“如果我们本身是在某一个行业里,不是一个平台公司,可能就只希望获得直接的商业回报链条,没有公平性、公允性,也就不会把很多先进的技术写成论文、做开源项目跟大家分享。”
“探索研究的心态和平台的心态,它们两个碰在一起就有可能跟行业碰撞出火花。”刘铁岩表示,人工智能企业如果缺乏了其中一个,跨界合作这条路就不会走得太长。
在探索中,现阶段的AI跨界合作,是技术原创性更重要还是行业知识更重要?刘铁岩认为,这两件事都重要。
去年,微软亚洲研究院发布了AI量化投资开源平台“微矿 Qlib”,它涵盖了量化投资的全过程,为用户的AI算法提供高性能的底层基础架构,从框架设计上让用户可以更容易地应用AI算法来辅助解决量化投资的各个关键问题。
对于金融从业者来说,Qlib平台降低了使用AI算法的门槛,其内部集成了AI算法在金融场景下的十几个使用样例以供参考,为金融业提供了一个适应AI算法的高性能基础设施和数据、模型管理平台。
刘铁岩说,在开发Qlib开源项目时,团队发现了很多让人大跌眼镜的现状。“有很多学术机构在做跟投资有关的研究,你会看到各种论文,里面甚至有很多天文数字。”
比如随便一个模型就带来了超过100%的超额收益;再比如回测过程中根本没有考虑到涨停、跌停的情况,没有考虑到最小交易量的限制。
“如果不把行业里的规则考虑进去,仿真是没有意义的,你想做出1000%的超额收益都能做得到。”刘铁岩表示,在AI跨界合作中,他们意识到有大量技术陷阱存在。如果对行业知识储备不够,就有可能做出不切实际的成果。
AI落地其他行业也是一样的道理,如果不深入理解其他行业的门道、规则和知识,而是简单从科学研究角度照猫画虎,就很有可能带来误导。